7/x^2-36-1/x-6

Simple and best practice solution for 7/x^2-36-1/x-6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/x^2-36-1/x-6 equation:


D( x )

x = 0

x^2 = 0

x = 0

x = 0

x^2 = 0

x^2 = 0

1*x^2 = 0 // : 1

x^2 = 0

x = 0

x in (-oo:0) U (0:+oo)

7/(x^2)-(1/x)-36-6 = 0

7/(x^2)-x^-1-36-6 = 0

7*x^-2-x^-1-42 = 0

t_1 = x^-1

7*t_1^2-1*t_1^1-42 = 0

7*t_1^2-t_1-42 = 0

DELTA = (-1)^2-(-42*4*7)

DELTA = 1177

DELTA > 0

t_1 = (1177^(1/2)+1)/(2*7) or t_1 = (1-1177^(1/2))/(2*7)

t_1 = (1177^(1/2)+1)/14 or t_1 = (1-1177^(1/2))/14

t_1 = (1-1177^(1/2))/14

x^-1-((1-1177^(1/2))/14) = 0

1*x^-1 = (1-1177^(1/2))/14 // : 1

x^-1 = (1-1177^(1/2))/14

-1 < 0

1/(x^1) = (1-1177^(1/2))/14 // * x^1

1 = ((1-1177^(1/2))/14)*x^1 // : (1-1177^(1/2))/14

14*(1-1177^(1/2))^-1 = x^1

x = 14*(1-1177^(1/2))^-1

t_1 = (1177^(1/2)+1)/14

x^-1-((1177^(1/2)+1)/14) = 0

1*x^-1 = (1177^(1/2)+1)/14 // : 1

x^-1 = (1177^(1/2)+1)/14

-1 < 0

1/(x^1) = (1177^(1/2)+1)/14 // * x^1

1 = ((1177^(1/2)+1)/14)*x^1 // : (1177^(1/2)+1)/14

14*(1177^(1/2)+1)^-1 = x^1

x = 14*(1177^(1/2)+1)^-1

x in { 14*(1-1177^(1/2))^-1, 14*(1177^(1/2)+1)^-1 }

See similar equations:

| -6/5(-2)=y | | 21(n/7) | | 2.04=55/(24+x) | | 3x+2=2(x-1) | | 6/3m+6+3/m+2 | | 3(-1)-2y=4 | | ax-5a+4x-20= | | 2.0455/(24+x) | | 6+16n-5=4n+29-2n | | 1.96=55/(24+x) | | 3lnx-4=10 | | 6+16m-5=4n+29-2n | | 3-7y=9-3y | | x^2+y^2+8x+20y+114=0 | | 20-14/2+13= | | x(x+2)(3)=144 | | 7y-11=5y-13 | | 4x+15=6x-1 | | -.58333+y=.166666 | | 4m+9n=d | | y=-75 | | -y/5=15 | | -7/6+5=y | | 6p+3r-4p+7r= | | -3/4=-3/2+x | | -37/6+5=y | | 6(5-3t)-17+5t= | | .38x-4=.25x | | 3x-6y+18=0fory | | 25=16-x | | y=x^2+7x+12y | | Y=P(x)Q(x)+P(y)Q(y) |

Equations solver categories